Extensions 1→N→G→Q→1 with N=C22 and Q=C6×D9

Direct product G=N×Q with N=C22 and Q=C6×D9
dρLabelID
D9×C22×C6144D9xC2^2xC6432,556

Semidirect products G=N:Q with N=C22 and Q=C6×D9
extensionφ:Q→Aut NdρLabelID
C22⋊(C6×D9) = C6×C3.S4φ: C6×D9/C3×C6S3 ⊆ Aut C22366C2^2:(C6xD9)432,534
C222(C6×D9) = C2×A4×D9φ: C6×D9/D18C3 ⊆ Aut C22546+C2^2:2(C6xD9)432,540
C223(C6×D9) = C3×D4×D9φ: C6×D9/C3×D9C2 ⊆ Aut C22724C2^2:3(C6xD9)432,356
C224(C6×D9) = C6×C9⋊D4φ: C6×D9/C3×C18C2 ⊆ Aut C2272C2^2:4(C6xD9)432,374

Non-split extensions G=N.Q with N=C22 and Q=C6×D9
extensionφ:Q→Aut NdρLabelID
C22.1(C6×D9) = C3×D42D9φ: C6×D9/C3×D9C2 ⊆ Aut C22724C2^2.1(C6xD9)432,357
C22.2(C6×D9) = C3×D365C2φ: C6×D9/C3×C18C2 ⊆ Aut C22722C2^2.2(C6xD9)432,344
C22.3(C6×D9) = C12×Dic9central extension (φ=1)144C2^2.3(C6xD9)432,128
C22.4(C6×D9) = C3×Dic9⋊C4central extension (φ=1)144C2^2.4(C6xD9)432,129
C22.5(C6×D9) = C3×C4⋊Dic9central extension (φ=1)144C2^2.5(C6xD9)432,130
C22.6(C6×D9) = C3×D18⋊C4central extension (φ=1)144C2^2.6(C6xD9)432,134
C22.7(C6×D9) = C3×C18.D4central extension (φ=1)72C2^2.7(C6xD9)432,164
C22.8(C6×D9) = C6×Dic18central extension (φ=1)144C2^2.8(C6xD9)432,340
C22.9(C6×D9) = D9×C2×C12central extension (φ=1)144C2^2.9(C6xD9)432,342
C22.10(C6×D9) = C6×D36central extension (φ=1)144C2^2.10(C6xD9)432,343
C22.11(C6×D9) = C2×C6×Dic9central extension (φ=1)144C2^2.11(C6xD9)432,372

׿
×
𝔽